Abstract

Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.