Abstract

In the sensor feedback control of intelligent robots, the delay time must be reduced for a large number of multiply-additions. To reduce the delay time for multi-operand multiply additions, the architecture of the reconfigurable parallel processor is proposed. In each PE, a switch circuit (SC) is used to change the connection between multipliers and adders. By changing the switch elements in the SC using the very-long-instruction-word (VLIW) control method, the multiply-adders having desired numbers of multipliers can be reconfigured every clock cycle. Since the data transfer is performed by the direct connection between multipliers and adders, the overhead for data transfer is greatly reduced. In addition, the utilised ratio of the multipliers and the adders is increased. The chip evaluation based on 0.8 /spl mu/m CMOS design rule shows that the delay time for dynamic control of a seven-degrees-of-freedom (DOF) redundant robot manipulator becomes about 10 /spl mu/s which is about 7.7 times faster than that of a parallel-processor approach using conventional digital signal processors (DSPs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.