Abstract

This paper reports the demonstration of a widely-translatable fiber-optic mirror based on the motion of liquid metal through the hollow core of a photonic bandgap fiber. By moving a liquid metal mirror within the hollow core of an optical fiber, large, continuous changes in optical path length are achieved in a comparatively small package. A fiber-optic device is demonstrated which provided a continuously-variable optical path length of over 3.6 meters, without the use of free-space optics or resonant optical techniques (i.e. slow light). This change in path length corresponds to a continuously-variable true-time delay of over 12 ns, or 120 periods at a modulation frequency of 10 GHz. Wavelength dependence was shown to be negligible across the C and L bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call