Abstract

<p><span lang="EN-US">Reconfigurable intelligent surfaces (RIS) is a wireless technology that has the potential to improve cellular communication systems significantly. This paper considers enhancing the RIS beamforming in a RIS-aided multiuser multi-input multi-output (MIMO) system to enhance user throughput in cellular networks. The study offers an unsupervised/deep neural network (U/DNN) that simultaneously optimizes the intelligent surface beamforming with less complexity to overcome the non-convex sum-rate problem difficulty. The numerical outcomes comparing the suggested approach to the near-optimal iterative semi-definite programming strategy indicate that the proposed method retains most performance (more than 95% of optimal throughput value when the number of antennas is 4 and RIS’s elements are 30) while drastically reducing system computing complexity.</span></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.