Abstract
Reconfigurable intelligent surfaces (RIS) have the ability to steer the electromagnetic (EM) waves to a desired direction. This enables the improvement of the wireless link performance by allowing the illumination of receivers otherwise shadowed by buildings or hills. In this paper, a standards-compliant link-level simulator is developed to study the performance improvement offered by a RIS in 5G New Radio (NR) uplink operating at sub-6 GHz bands. At these frequencies the direct channel between the user and base station is rarely completely blocked, but given the stringent power restrictions of devices, the RIS is utilized for enhancing the coverage performance in the uplink direction. In the studied cases, the transmitter (TX) is close to the RIS and a line-of-sight (LoS) path between the TX and RIS is assumed. The channel between the TX and receiver (RX) is modeled as a non-line-of-sight (NLoS) channel with 5G NR clustered delay line A (CDL-A) profile. Both LoS and NLoS channels between the RIS and RX are considered. Under state-of-the-art system settings, the RIS is shown to increase the symbol error rate link performance by 6 dB. When the performance is measured with coded bit error rate, the performance gain in simulated cases is 1 dB. The coverage enhancement is measured with the throughput as a function of the distance between the TX and RX. The distance at which the maximum possible throughput can be achieved is increased about 5%. The coverage can be further extended if a lower than the maximum throughput is accepted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.