Abstract

Using radio-frequency (RF) sensing techniques for human posture recognition has attracted growing interest due to its advantages of pervasiveness, contact-free observation, and privacy protection. Conventional RF sensing techniques are constrained by their radio environments, which limit the number of transmission channels to carry multi-dimensional information about human postures. Instead of passively adapting to the environment, in this paper, we design an RF sensing system for posture recognition based on reconfigurable intelligent surfaces (RISs). The proposed system can actively customize the environments to provide desirable propagation properties and diverse transmission channels. However, achieving high recognition accuracy requires the optimization of RIS configuration, which is a challenging problem. To tackle this challenge, we formulate the optimization problem, decompose it into two subproblems, and propose algorithms to solve them. Based on the developed algorithms, we implement the system and carry out practical experiments. Both simulation and experimental results verify the effectiveness of the designed algorithms and system. Compared to the random configuration and non-configurable environment cases, the designed system can greatly improve the recognition accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call