Abstract

This paper proposes universal coarse-grained reconfigurable computing architecture for hardware implementation of decision trees (DTs), artificial neural networks (ANNs), and support vector machines (SVMs), suitable for both field programmable gate arrays (FPGA) and application specific integrated circuits (ASICs) implementation. Using this universal architecture, two versions of DTs (functional DT and axis-parallel DT), two versions of SVMs (with polynomial and radial kernel) and two versions of ANNs (multi layer perceptron ANN and radial basis ANN) machine learning classifiers, have been implemented in FPGA. Experimental results, based on 18 benchmark datasets of standard UCI machine learning repository database, show that FPGA implementation provides significant improvement (1–2 orders of magnitude) in the average instance classification time, in comparison with software implementations based on R project.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.