Abstract

Reconfigurable circuit designs for automatic seizure detection devices are essential to prevent epilepsy affected people from severe injuries and other health-related problems. In this proposed design, an automatic seizure detection algorithm based on the Linear binary Support Vector Machine learning algorithm (LSVM) is developed and implemented in a Field-Programmable Gate Array (FPGA). The experimental results showed that the mean detection accuracy is 86% and sensitivity is 97%. The resource utilization of the implemented design is less when compared to existing hardware implementations. The power consumption of the proposed design is 76mW at 100MHz. The experimental results assure that a physician can make use of this proposed design in detecting seizure events.

Highlights

  • Najumnissa JamalAbstract—Reconfigurable circuit designs for automatic seizure detection devices are essential to prevent epilepsy affected people from severe injuries and other health-related problems

  • Abnormal brain nerve cell functioning prompts seizures

  • Support Vector Machine (SVM), is one of the machine learning algorithms, which provides better results since it learns by solving constrained quadratic programming whose performance is dependent on large size training sample

Read more

Summary

Najumnissa Jamal

Abstract—Reconfigurable circuit designs for automatic seizure detection devices are essential to prevent epilepsy affected people from severe injuries and other health-related problems. In this proposed design, an automatic seizure detection algorithm based on the Linear binary Support Vector Machine learning algorithm (LSVM) is developed and implemented in a Field-Programmable Gate Array (FPGA). The experimental results showed that the mean detection accuracy is 86% and sensitivity is 97%. The resource utilization of the implemented design is less when compared to existing hardware implementations. The power consumption of the proposed design is 76mW at 100MHz. The experimental results assure that a physician can make use of this proposed design in detecting seizure events

INTRODUCTION
LITERATURE REVIEW
RESULTS AND DISCUSSION
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.