Abstract

A fully integrated dual-channel multiband RF receiver is designed and implemented for next-generation global navigation satellite systems (GNSSs) in a 0.18-μm CMOS process. Its two reconfigurable signal channels can simultaneously process any two types of 2-, 4-, or 20-MHz bandwidth signals mainly located around the RF bands of 1.2 and 1.57 GHz for GPS, Galileo, and BD-2 (aka Compass) systems, while achieving better performance (die area, noise figure, gain dynamic range) than other state-of-the-art GNSS receivers. A digital automatic gain control loop consisting of a variable gain amplifier and nonuniform 4-bit ADC is utilized to improve the receiver's robustness and performance in the presence of interferences. While drawing 25-mA current per channel from a 1.8-V supply, this RF receiver achieves a total noise figure of 2.5 dB/2.7 dB at 1.2/1.57 GHz, an image rejection of 28 dB, a maximum voltage gain of 110 dB, a gain dynamic range of 73 dB, and an input-referred 1-dB compression point of -58 dBm, with an active die area of 2.4 mm2 for single channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.