Abstract

The controllable band gap and charge-trapping capability of MoS2 render it suitable for use in the fabrication of various electrical devices with high-k dielectric oxides. In this study, we investigated reconfigurable resistance states in a MoS2/Nb:SrTiO3 heterostructure by using conductive atomic force microscopy. Low-resistance and high-resistance states were observed in all MoS2 because of barrier height modification resulting from redistribution of charge and oxygen vacancies in the vicinity of interfaces. In a thin layer of the MoS2 film, the carrier density was high, and layer-dependent transport properties appeared because of the charge separation in MoS2. The hysteresis and switching voltage of the MoS2/Nb:SrTiO3 heterostructure could be varied by controlling the number of layers of MoS2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call