Abstract

In-memory computing based on memristive logic is considered as a prospective non von Neumann computing paradigm. In this letter, we systematically analyze the four-variable logic method and map it into the operation of two anti-serial complementary memristors in the crossbar array architecture. Arbitrary Boolean logic can be implemented within three cycles with the experimental evidence of reconfigurable NAND, NOR, and XOR logic using Pt/HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /TiN devices. Taking advantage of the functional flexibility, a parallel 1-bit full adder that can be realized in 8 cycles within a 4 × 3 array has been designed and verified in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.