Abstract

Protecting aboveground carbon stocks in tropical forests is essential for mitigating global climate change and is assumed to simultaneously conserve biodiversity. Although the relationship between tree diversity and carbon stocks is generally positive, the relationship remains unclear for consumers or decomposers. We assessed this relationship for multiple trophic levels across the tree of life (10 organismal groups, 3 kingdoms) in lowland rainforests of the Congo Basin. Comparisons across regrowth and old-growth forests evinced the expected positive relationship for trees, but not for other organismal groups. Moreover, differences in species composition between forests increased with difference in carbon stock. These variable associations across the tree of life contradict the implicit assumption that maximum co-benefits to biodiversity are associated with conservation of forests with the highest carbon storage. Initiatives targeting climate change mitigation and biodiversity conservation should include both old-growth and regenerating forests to optimally benefit biodiversity and carbon storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.