Abstract

Practices for global sensitivity analysis of model output are described in a recent textbook (Saltelli et al., 2007). These include (i) variance based techniques for general use in modelling, (ii) the elementary effect method for factor screening for factors-rich models and (iii) Monte Carlo filtering. In the present work we try to put the practices into the context of their usage. We start by describing the present debate on the use of scientific models, and how uncertainty and sensitivity analysis can assist is testing model quality. We discuss Type I, II and III errors in the context of sensitivity analysis and what are the requirements for a good analysis. We also present sensitivity analysis in relation to post normal science (PNS) and model pedigrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.