Abstract

BackgroundRecombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. Further, this allows to evaluate the impact of chromosomal surroundings on distinct vector constructs.ResultsWe explored antibody expression upon targeting diverse expression constructs into previously tagged loci in CHO-K1 and HEK293 cells that exhibit high reporter gene expression. These loci were selected by random transfer of reporter cassettes and subsequent screening. Both, retroviral infection and plasmid transfection with eGFP or antibody expression cassettes were employed for tagging. The tagged cell clones were screened for expression and single copy integration. Cell clones producing > 20 pg/cell in 24 hours could be identified. Selected integration sites that had been flanked with heterologous recombinase target sites (FRTs) were targeted by Flp recombinase mediated cassette exchange (RMCE). The results give proof of principle for consistent protein expression upon RMCE. Upon targeting antibody expression cassettes 90-100% of all resulting cell clones showed correct integration. Antibody production was found to be highly consistent within the individual cell clones as expected from their isogenic nature. However, the nature and orientation of expression control elements revealed to be critical. The impact of different promoters was examined with the tag-and-targeting approach. For each of the chosen promoters high expression sites were identified. However, each site supported the chosen promoters to a different extent, indicating that the strength of a particular promoter is dominantly defined by its chromosomal context.ConclusionRMCE provides a powerful method to specifically design vectors for optimized gene expression with high accuracy. Upon considering the specific requirements of chromosomal sites this method provides a unique tool to exploit such sites for predictable expression of biotechnologically relevant proteins such as antibodies.

Highlights

  • Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines

  • It comprises the tagging of chromosomal integration sites within the host genome of a given cell line with a reporter gene cassette

  • Catalyzed by the Flp recombinase that is encoded by a plasmid and is co-transferred together with the targeting vector cassette exchange will occur (Flp recombinase mediated cassette exchange, RMCE, Figure 1A)

Read more

Summary

Introduction

Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. This allows to evaluate the impact of chromosomal surroundings on distinct vector constructs. Upon uptake into the nucleus, the incoming DNA, in particular through double-strand breaks, is sensed by the cellular repair machinery. These enzymes stably integrate the incoming recombinant DNA into the cellular DNA by illegitimate recombination. Upon random integration, individual cell clones display a highly heterogenous expression pattern and have to be screened for appropriate expression

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.