Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is known to be one of the most potentially pathogenic organisms in the world. Skin infections are one of the significant infections of S. aureus. Therefore, therapeutic constraints have challenged researchers to seek new strategies to produce new medicines. Antimicrobial peptides (AMPs) are a new generation of natural drugs with antimicrobial properties and high fatality potency. Oncorhyncin II AMP is a group of peptides with bacteriostatic activity and antimicrobial effect against Gram-positive and Gram-negative bacteria. Therefore, the development and promotion of antimicrobial peptides can be a new step in the treatment of skin infections due to bacterial resistant S. aureus in hospitals. Objectives: The objective of this study was to produce recombinant Oncorhyncin II protein and evaluate its antimicrobial effects on MRSA to determine the outcomes of the treatment. Methods: In this experimental study, the Oncorhyncin II Antimicrobial peptide was synthesized by the recombinant method. The effectiveness of this peptide was assessed by the minimum inhibitory concentration (MIC) test. The activity of recombinant protein against S. aureus was investigated using in vitro and in vivo experiments. Results: The effectiveness of this peptide obtained by the MIC test was 225 μg/mL. The activity test confirmed the MIC test and showed that this antimicrobial peptide has been able to reduce MRSA cell growth. All mice infected with MRSA responded positively to the protein treatment. Conclusions: According to Oncorhyncin II antimicrobial peptide activity studies, this peptide, as a new generation of antibiotics, was expected to have positive outcomes in the improvement of S. aureus skin infections. Therefore, the results of the efficacy require further studies to be confirmed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have