Abstract

Introduction and Objective: Kawasaki disease (KD) is associated with diffuse and systemic vasculitis of unknown aetiology and primarily affects infants and children. Intravenous immunoglobulin (IVIG) treatment reduces the risk of developing coronary aneurysms, but some children have IVIG-resistant KD, which increases their risk of developing coronary artery injury. Here, we investigated the effect of recombinant human soluble thrombomodulin (rTM), which has anticoagulant, anti-inflammatory, and cytoprotective properties on the development of coronary arteritis in a mouse model of vasculitis. Methods: An animal model of KD-like vasculitis was created by injecting mice with Candida albicans water-soluble fraction (CAWS). This model was used to investigate the mRNA expression of interleukin (IL)-10, tumour necrosis factor alpha (TNF-α), and tissue factor (TF), in addition to histopathology of heart tissues. Results: rTM treatment significantly reduces cardiac vascular endothelium hypertrophy by 34 days after CAWS treatment. In addition, mRNA expression analysis revealed that rTM administration increased cardiac IL-10 expression until day 27, whereas expression of TNF-α was unaffected. Moreover, in the spleen, rTM treatment restores IL-10 and TF expression to normal levels. Conclusion: These findings suggest that rTM suppresses CAWS-induced vasculitis by upregulating IL-10. Therefore, rTM may be an effective treatment for KD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call