Abstract

Simple summaryOne of the limitations of vaccine development against E. canis infection is the indefinite knowledge of the protective immunity in the host. In this study, recombinant protein GP19 was produced as a vaccine prototype, rGP19, for inducing protective immune responses in a mouse model against E. canis. Antibody responses against E. canis were evaluated and revealed that the immunized mice with rGP19 showed higher antibody levels than in adjuvant-immunized and naive mice, both pre- and post-challenging with E. canis. DNA from blood, liver, and spleen were extracted to determine ehrlichial loads. The rGP19-immunized mice showed significantly lower ehrlichial loads in blood, liver, and spleen DNA compared with adjuvant-immunized mice. This study also detected IFN-γ-producing CD4+ T cells in the rGP19-immunized mice and then were later infected with E. canis on day 14 of the post-infection period using flow cytometry. Additionally, Cytokine mRNA expression was investigated and revealed up-regulation of IFNG and IL1 mRNA expression in rGP19-immunized mice. The present study provides evidence of rGP19 that can eliminate E. canis by manipulating both humoral and cell-mediated immune responses in the laboratory animal model.The intracellular bacterium Ehrlichia canis is the causative pathogen of canine monocytic ehrlichiosis (CME) in dogs. Despite its veterinary and medical importance, there is currently no available vaccine against this pathogen. In this study, the recombinant GP19 (rGP19) was produced and used as a recombinant vaccine prototype in a mouse model against experimental E. canis infection. The efficacy of the rGP19 vaccine prototype in the part of stimulating B and T cell responses and conferring protection in mice later challenged with E. canis pathogen were evaluated. The rGP19-specific antibody response was evaluated by ELISA after E. canis challenge exposure (on days 0, 7, and 14 post-challenge), and demonstrated significantly higher mean antibody levels in rGP19-immunized mice compared with adjuvant-immunized and naive mice. Significantly lower ehrlichial loads in blood, liver, and spleen DNA samples were detected in the immunized mice with rGP19 by qPCR. The up-regulation of IFNG and IL1 mRNA expression were observed in mice immunized with rGP19. In addition, this study detected IFN-γ-producing memory CD4+ T cells in the rGP19-immunized mice and later infected with E. canis on day 14 post-infection period using flow cytometry. The present study provided a piece of evidence that rGP19 may eliminate E. canis by manipulating Th1 and B cell roles and demonstrated a promising strategy in vaccine development against E. canis infection in the definitive host for further study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call