Abstract

Recombinant bone matrix (RBM) is a newly conceived and engineered porous bone graft granule of average size 600 μm composed of purified recombinant collagen peptide. We sought to examine the behaviour with time of RBM that was grafted in the canine tooth extraction socket. The canine tooth extraction socket of the hemisectioned mandibular third premolar distal root was grafted with RBM granules, whereas the opposite side extraction socket served as non-grafted control. The mandibular samples were harvested at 1, 3 and 6 months of healing and subjected to micro-CT imaging and decalcified paraffin-embedded histology. Separately, the effect of RBM was compared with that of deproteinized cancellous bovine bone (DCBB) and bovine atelocollagen plug (BACP) in the canine tooth extraction model at 3 months of healing. RBM maintained the grafted space in the socket and the gingival connective tissue until new bone was formed within its porous space. The regenerated bone was highly vascularized and continued to mature, while RBM was completely bioresorbed by 6 months. The buccal and lingual alveolar ridge heights of the RBM-grafted extraction socket was better preserved than those of non-grafted control sockets. The degree of socket preservation by RBM was equivalent to that by DCBB, although their healing mechanisms were different. This study demonstrated that RBM induced controlled active bone regeneration and preserved the extraction socket structure in a canine model. Bioresorbable RBM engineered without animal or human source materials presents a novel bone graft category with robust bone regenerative property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call