Abstract

The effect of a genetically engineered Pseudomonas aureofaciens (Ps3732RNL11) strain (GEM) and the parental wild-type (Ps3732RN) on decomposition of cellulose paper, straw and calico cloth was assessed after 18 weeks incubation in laboratory soil microcosms. Effect(s) of inoculum density (10(3), 10(5), and 10(8) cells/g dry soil) and single versus multiple bacterial inoculations were also investigated. Cellulose paper was completely decomposed after 18 weeks in all treatments. There were no significant differences (95% level), between treatments, in percentage decomposition of either straw or calico cloth. Recovery of the GEM at 18 weeks, using viable plating, was limited to treatments originally receiving 10(8) cells/g dry soil. Log 1.8 CFU/g dry soil were recovered from the single dose treatment while log 4.2 CFU/g dry soil were recovered from the multiple dose treatment. Biolog metabolic tests were used to determine if the GEM or parental wild-type had any effect on overall carbon utilization in soil. Results suggested they did not. Detection of the recombinant lacZY gene sequence in soil using PCR suggested the possibility of viable but nonculturable cells and/or persistence of chromosomal DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.