Abstract
Toxoplasmosis diagnosis predominantly relies on serology testing via enzyme-linked immunosorbent assay (ELISA), but these results are highly variable. Consequently, various antigens are being evaluated to improve the sensitivity and specificity of toxoplasmosis serological diagnosis. Here, we generated Toxoplasma gondii virus-like particles displaying AMA1 of T. gondii and evaluated their diagnostic potential. We found that AMA1 VLPs were highly sensitive and reacted with the sera acquired from mice infected with either T. gondii ME49 or RH strains. The overall IgG and IgM antibody responses elicited by AMA1 VLPs were substantially higher than those induced by the conventionally used T. gondii lysate antigen (TLA). Importantly, AMA1 VLPs were capable of detecting parasitic infection with T. gondii RH and ME49 as early as 1 week post-infection, even when mice were exposed to low infectious doses (5 × 103 and 10 cysts, respectively). AMA1 VLPs also did not cross-react with the immune sera acquired from Plasmodium berghei-infected mice. Compared to TLA, stronger antibody responses were induced by AMA1 VLPs when tested using T. gondii-infected human sera. The sensitivities and specificities of the two antigens were substantially different, with AMA1 VLPs demonstrating over 90% sensitivity and specificity, whereas these values were in the 70% range for the TLA. These results indicated that AMA1 VLPs can detect infections of both T. gondii ME49 and RH at an early stage of infection caused by very low infection doses in mice, and these could be used for serological diagnosis of human toxoplasmosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have