Abstract
Subradiance, i.e. the cooperative inhibition of spontaneous emission by destructive interatomic interference, can be realized in a cold atomic sample confined in a ring cavity and lightened by a two-frequency laser. The atoms, scattering the photons of the two laser fields into the cavity-mode, recoil and change their momentum. Under proper conditions the atomic initial momentum state and the first two momentum recoil states form a three-level degenerate cascade. A stationary subradiant state is obtained after that the scattered photons have left the cavity, leaving the atoms in a coherent superposition of the three collective momentum states. After a semiclassical description of the process, we calculate the quantum subradiant state and its Wigner function. Anti-bunching and quantum correlations between the three atomic modes of the subradiant state are demonstrated.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have