Abstract

ABSTRACTThe proliferation of Artificial Intelligence Generated Content (AIGC) poses significant challenges to user experience and information accuracy, especially on search engine websites(Guo et al., 2023). The current solution is to identify AIGC by machine learning algorithms or publicly available AI detection tools, whereas, machine learning(Wang & Wang, 2022) algorithms degrade in accuracy as more data is available and tools such as GPTZero perform poorly in the task of AIGC detection on social media. In this paper, we propose an EPCNN model to identify AIGC on search engine websites, which maintains good performance in large‐scale samples. The ERNIE model integrates cross‐domain knowledge and improves language understanding and generalization. We use ERNIE to extract text features, then use a feature pyramid network to capture semantic information at different levels, and finally use an end‐to‐end structure to connect ERNIE and the feature pyramid network to construct the EPCNN. Experimental results show that our proposed algorithm has high accuracy and the ability to handle large‐scale data compared with machine learning algorithms and AI detection tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.