Abstract
BackgroundKidney disease progression rates vary among patients. Rapid and accurate prediction of kidney disease outcomes is crucial for disease management. In recent years, various prediction models using Machine Learning (ML) algorithms have been established in nephrology. However, their accuracy have been inconsistent. Therefore, we conducted a systematic review and meta-analysis to investigate the diagnostic accuracy of ML algorithms for kidney disease progression.MethodsWe searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials, the Chinese Biomedicine Literature Database, Chinese National Knowledge Infrastructure, Wanfang Database, and the VIP Database for diagnostic studies on ML algorithms’ accuracy in predicting kidney disease prognosis, from the establishment of these databases until October 2020. Two investigators independently evaluate study quality by QUADAS-2 tool and extracted data from single ML algorithm for data synthesis using the bivariate model and the hierarchical summary receiver operating characteristic (HSROC) model.ResultsFifteen studies were left after screening, only 6 studies were eligible for data synthesis. The sample size of these 6 studies was 12,534, and the kidney disease types could be divided into chronic kidney disease (CKD) and Immunoglobulin A Nephropathy, with 5 articles using end-stage renal diseases occurrence as the primary outcome. The main results indicated that the area under curve (AUC) of the HSROC was 0.87 (0.84–0.90) and ML algorithm exhibited a strong specificity, 95% confidence interval and heterogeneity (I2) of (0.87, 0.84–0.90, [I2 99.0%]) and a weak sensitivity of (0.68, 0.58–0.77, [I2 99.7%]) in predicting kidney disease deterioration. And the the results of subgroup analysis indicated that ML algorithm’s AUC for predicting CKD prognosis was 0.82 (0.79–0.85), with the pool sensitivity of (0.64, 0.49–0.77, [I2 99.20%]) and pool specificity of (0.84, 0.74–0.91, [I2 99.84%]). The ML algorithm’s AUC for predicting IgA nephropathy prognosis was 0.78 (0.74–0.81), with the pool sensitivity of (0.74, 0.71–0.77, [I2 7.10%]) and pool specificity of (0.93, 0.91–0.95, [I2 83.92%]).ConclusionTaking advantage of big data, ML algorithm-based prediction models have high accuracy in predicting kidney disease progression, we recommend ML algorithms as an auxiliary tool for clinicians to determine proper treatment and disease management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.