Abstract

With the explosion of information in our current era, senders of information increasingly need to target their messages to recipients. However, messages within transportation systems, including traffic information and commercial advertisements, tend to be transmitted to all drivers indiscriminately. This is because the information providers (such as other vehicles, roads, facilities, buildings etc.), can hardly recognize the variations within drivers, who should be treated differently as information recipients. As a result of the rapid development of data collection technologies and machine learning techniques in recent years, extraction and recognition of drivers’ unique driving style from actual driving behaviour data become possible. In this paper, two kinds of topic models are investigated: mLDA and mHLDA, to discover distinguishable driving style information with hidden structure from the real-world driving behaviour data. The results show that the proposed models can successfully recognize the differences between driving styles. The study is of great value for providing deep insight into the underlying structure of driving styles and can effectively support the recognition of drivers with different driving styles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.