Abstract
The extensive use of gestures for human-human communication, independently of culture and language, suggests an underlying universal neural mechanism for gesture recognition. The mirror neuron system (MNS) is known to respond to observed human actions, and overlaps with self-action. The minimal cues needed for activation of the MNS for gesture recognition, facial expressions and bodily dynamics, is not yet defined. Using LED-point representations of gestures, we compared two types of brain activations: 1) in response to human recognizable vs non-recognizable motion and 2) in response to human vs non-human motion. Our preliminary results show that parts of the MNS respond only to human kinematics, and not to nonhuman kinematics, suggesting that the brain has a mechanism of discriminating human from nonhuman motion, even if the pattern of motion is meaningless, but still follows biological motion patterns. This implies that mechanisms of learning-mimicking, empathy and emotional communication, are possibly constrained by biological motion patterns. We then suggest a two-tier-model of human-bodily-communication: (1) recognition of human biological kinematics; (2) recognition of meaning. Implications are both theoretical (understanding the underlying mechanism for action recognition) and applicative (in digital graphical social representations, motion should be reasonably biological to generate the same emotional and mimicking automatic mechanisms as in face-to-face social interactions).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have