Abstract

Emissions of numerous targeted and non-targeted organic pollutants from industrial activities are one of the major contributors to the global air pollution. However, comprehensive recognition of their molecular characterization and real industrial scale mechanisms have never been achieved. Herein, by using high resolution mass spectrometry, we firstly give an insight into the molecular characterization and mechanisms of organic pollutants formed on fly ashes from secondary smelting of Al, Cu, Pb, and Zn and electric arc furnace steel-making. We found that lipid-like, unsaturated hydrocarbon and carboxyl-rich alicyclic molecule-like structures were the major chemical classes. Methylation- and oxidation-related reactions were suggested to be the major formation mechanisms. The predominance of carboxyl-rich structures in the fly ash further proved the contribution of metallurgical industrial emissions to air pollution. Findings in this study could be significant for further understanding the contribution of industrial emissions to air pollutions and conducting their source emission control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.