Abstract

Recognizing noncoding ribonucleic acid (ncRNA) data is helpful in realizing the regulation of tumor formation and certain aspects of life mechanisms, such as growth, differentiation, development, and immunity. However, the scale of ncRNA data is usually very large. Using machine learning (ML) methods to automatically analyze these data can obtain more precise results than manually analyzing these data, but the traditional ML algorithms can process only small-scale training data. To solve this problem, a novel multitask cross-learning 0-order Takagi–Sugeno–Kang fuzzy classifier (MT-CL-0-TSK-FC) is proposed that uses a multitask cross-learning mechanism to solve the large-scale learning problem of ncRNA data. In addition, the proposed MT-CL-0-TSK-FC method naturally inherits the interpretability of traditional fuzzy systems and eventually generates an interpretable rulesbased database to recognize the ncRNA data. The experimental results indicate that the proposed MT-CL-0TSK-FC method has a faster running time and better classification accuracy than traditional ML methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.