Abstract
Brain-computer interfaces (BCIs) offer a very high potential to help those who cannot use their organs properly. In the literature, many electroencephalogram based BCIs exist. Steady state visual evoked potential (SSVEP) based BCIs provide relatively higher accuracy values which make them very popular in BCI research. Recently, deep learning (DL) based methods have been used in electroencephalogram classification problems and they had superior performance over traditional machine learning (ML) methods, which require feature extraction step. This study aimed at comparing the performance of DL and traditional ML based classification performance in terms of stimuli duration, number of channels, and number of trials in an SSVEP based BCI experiment. In the traditional approach canonical correlation analysis method was used for the feature extraction and then three well-known classifiers were used for classification. In DL-based classification, spatio-spectral decomposition (SSD) method was integrated as a preprocessing step to extract oscillatory signals in the frequency band of interest with a convolutional neural network structure. Obtained offline classification results show that proposed DL approach could generate better accuracy values than traditional ML-based methods for short time segments (< 1 s). Besides, use of SSD as a preprocessing step increased the accuracy of DL classification. Superior performance of proposed SSD based DL approach over the traditional ML methods in short trials shows the feasibility of this approach in future BCI designs. Similar approach can be used in other fields where there are oscillatory activity in the recorded signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Balkan Journal of Electrical and Computer Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.