Abstract

Distinct lysine methylation marks on histones create dynamic signatures deciphered by the "effector" modules, although the underlying mechanisms remain unclear. We identified the plant homeodomain- and Jumonji C domain-containing protein PHF2 as a novel histone H3K9 demethylase. We show in biochemical and crystallographic analyses that PHF2 recognizes histone H3K4 trimethylation through its plant homeodomain finger and that this interaction is essential for PHF2 occupancy and H3K9 demethylation at rDNA promoters. Our study provides molecular insights into the mechanism by which distinct effector domains within a protein cooperatively modulate the "cross-talk" of histone modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.