Abstract

Invader probes have been proposed as alternatives to polyamides, triplex-forming oligonucleotides, and peptide nucleic acids for recognition of chromosomal DNA targets. These double-stranded probes are activated for DNA recognition by +1 interstrand zippers of pyrene-functionalized nucleotides. This particular motif forces the intercalating pyrene moieties into the same region, resulting in perturbation and destabilization of the probe duplex. In contrast, the two probe strands display very high affinity toward complementary DNA. The energy difference between the probe duplexes and recognition complexes provides the driving force for DNA recognition. In the present study, we explore the properties of Invader probes based on larger intercalators, i.e., perylene and coronene, expecting that the larger π-surface area will result in additional destabilization of the probe duplex and further stabilization of probe-target duplexes, in effect increasing the thermodynamic driving force for DNA recognition. Toward this end, we developed protocols for 2'-N-methyl-2'-amino-2'-deoxyuridine phosphoramidites that are functionalized at the N2'-position with pyrene, perylene, or coronene moieties and incorporated these monomers into oligodeoxyribonucleotides (ONs). The resulting ONs and Invader probes are characterized by thermal denaturation experiments, analysis of thermodynamic parameters, absorption and fluorescence spectroscopy, and DNA recognition experiments. Invader probes based on large intercalators efficiently recognize model targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.