Abstract

Binding of caffeine in aqueous solutions has been achieved for the first time by using water-soluble, tetracationic peptide-porphyrin conjugates Zn-1 as the receptor molecules. The association constant for caffeine with receptor Zn-1 is in some cases as high as 6000 M(-1), only 5-6 times lower than the highest binding constant reported for an artificial caffeine receptor in low polarity aprotic solvents. The binding mechanism has been studied by a combination of experimental techniques such as UV-visible and NMR spectroscopy and microcalorimetry. Recognition of caffeine involves both stacking with the porphyrin ring and metal coordination. Subtle variations of the receptor structure affect the complexation. Receptors Zn-1 have also been investigated for the recognition of molecules structurally related to caffeine, for example, 1-methylimidazole. Selectivity towards oxopurine derivatives (caffeine and theophylline) have been found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call