Abstract

ABSTRACTIn this study, the electrochemical degradation of caffeine (1,3,7-trimethylxanthine) in aqueous solution by a graphite electrode was investigated. Electrochemical degradation was tested by the cyclic voltametry technique performed in the potential range of −1.0 to +1.0 V versus Ag/AgCl, which confirmed the electro-activity of the selected caffeine. The effects of the treatment process variables, such as initial pH, current density, electrolyte concentration and electrolysis time on the degradation of caffeine, were explored. During the various stages of electrolysis, parameters such as chemical oxygen demand (COD), total organic carbon (TOC) were analysed. The maximum COD and TOC removal efficiencies of 85% and 77% were achieved at neutral pH 7, operated at a current density of 5.1 mA/cm2, electrolyte (Na2SO4) concentration of 0.1 M and at 240 min electrolysis time. From this study, it can be concluded that the electrochemical treatment process could effectively reduce the COD and TOC from the caffeine in aqueous medium. The degradation of the caffeine was confirmed by UV spectra, IR spectra and HPLC analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call