Abstract
Identifying the massage techniques of the masseuse is a prerequisite for guiding robotic massage. It is difficult to recognize multiple consecutive massage maps with a time series for current human action recognition algorithms. To solve the problem, a method combining a convolutional neural network, long-term neural network, and attention mechanism is proposed to identify the massage techniques in this paper. First, the pressure distribution massage map is collected by a massage glove, and the data are enhanced by the conditional variational auto-encoder. Then, the features of the massage map group in the spatial domain and timing domain are extracted through the convolutional neural network and the long- and short-term memory neural network, respectively. The attention mechanism is introduced into the neural network, giving each massage map a different weight value to enhance the network extraction of data features. Finally, the massage haptic dataset is collected by a massage data acquisition system. The experimental results show that a classification accuracy of 100% is achieved. The results demonstrate that the proposed method could identify sequential massage maps, improve the network overfitting phenomenon, and enhance the network generalization ability effectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have