Abstract

As an alternative resource, reclaimed water is rich in the various nutrients and organic matter that may irreparably endanger groundwater quality through the recharging process. During groundwater recharge with reclaimed water, hot spots and hot moments (HSHMs) in the hyporheic zones, located at the groundwater–reclaimed water interface, play vital roles in cycling and processing energy, carbon, and nutrients, drawing increasing concern in the fields of biogeochemistry, environmental chemistry, and pollution treatment and prevention engineering. This paper aims to review these recent advances and the current state of knowledge of HSHMs in the hyporheic zone with regard to groundwater recharge using reclaimed water, including the generation mechanisms, temporal and spatial characteristics, influencing factors, and identification indicators and methods of HSHMs in the materials cycle. Finally, the development prospects of HSHMs are discussed. It is hoped that this review will lead to a clearer understanding of the processes controlling water flow and pollutant flux, and that further management and control of HSHMs can be achieved, resulting in the development of a more accurate and safer approach to groundwater recharge with reclaimed water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.