Abstract
In illuminated rod outer segment membranes, GTP and guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) have reciprocal effects on cGMP phosphodiesterase (PDEase; 3':5'-cyclic-nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) activity and cGMP binding to noncatalytic sites on that enzyme. Two micromolar p[NH]ppG increased PDEase activity more than 2-fold while inhibiting cGMP binding more than 40%. Reduction of noncatalytic cGMP binding, which followed addition of p[NH]ppG, was not a result of PDEase activation. Both effects of p[NH]ppG were completely dependent on the presence of bleached rhodopsin. A heat-stable factor has been found to inhibit PDEase activity and also to stimulate cGMP binding to noncatalytic cGMP binding sites. Addition of p[NH]ppG reversed the effects of this factor on both PDEase activity and cGMP binding. During purification of this material, the activity peaks for both PDEase inhibition and activation of noncatalytic cGMP binding comigrated on both Blue Sepharose CL-6B column chromatography and sucrose density gradients centrifugation, suggesting that the same factor could be responsible for both inhibition of PDEase activity and enhancement of noncatalytic cGMP binding. Limited tryptic proteolysis of PDEase, which markedly reduced cGMP binding to the noncatalytic sites, and experiments using highly purified cAMP (free of cGMP) as substrate for PDEase showed that the binding of cGMP to noncatalytic sites was not required for the heat-stable inhibitory factor to inhibit PDEase activity. We discuss possible relationships between the regulation of PDEase and the binding of cGMP to noncatalytic sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.