Abstract

In biology, self-assembly of proteins and energy-consuming reaction cycles are intricately coupled. For example, tubulin is activated and deactivated for assembly by a guanosine triphosphate (GTP)-driven reaction cycle, and the emerging microtubules catalyze this reaction cycle by changing the microenvironment of the activated tubulin. Recently, synthetic analogs of chemically fueled assemblies have emerged, but examples in which assembly and reaction cycles are reciprocally coupled remain rare. In this work, we report a peptide that can be activated and deactivated for self-assembly. The emerging assemblies change the microenvironment of their building blocks, which consequently accelerate the rates of building block deactivation and reactivation. We quantitatively understand the mechanisms at play, and we are thus able to tune the catalysis by molecular design of the peptide precursor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.