Abstract

Despite universal administration of erythropoiesis-stimulating agents, patients with end-stage renal disease (ESRD) are at high risk for presenting persistent anemia. Due to ambiguities in optimal hemoglobin targets and evidence of recombinant human erythropoietin (EPO)-related toxicity, an increase in blood transfusions has been observed in chronic renal disease over the past years. The probable effects of uremic plasma on the performance of stored red blood cells (RBCs) after transfusion have not been investigated. Leukoreduced RBCs after short or long storage in CPD-SAGM (n = 5) were assessed for hemolysis, surface removal signaling, reactive oxygen species (ROS) accumulation, and shape distortions before and after reconstitution with healthy (n = 10) or uremic plasma from ESRD patients (n = 20) for 24 hours at physiologic temperature, by using a previously reported in vitro model of transfusion. Temperature and cell environment shifts from blood bag to plasma independently and in synergy affected the RBC physiology. Outcome measures at transfusion-simulating conditions might not be analogous to timing of storage lesion. The uremic plasma ameliorated the susceptibility of stored RBCs to hemolysis, phosphatidylserine externalization, and ROS generation after stimulation by oxidants, but negatively affected shape homeostasis versus healthy plasma. Creatinine, uric acid, and EPO levels had correlations with the performance of stored RBCs in ESRD plasma. Renal insufficiency and EPO supplementation likely affect the recovery of donor RBCs and the reactivity of RBCs after transfusion by exerting both toxic and cytoprotective influences on them. ESRD patients constitute a specific recipient group that deserves further examination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.