Abstract

ABSTRACT: Average‐annual volumes of runoff, evapotranspiration, channel loss, upland (interchannel) recharge, and total recharge were estimated for watersheds of 53 channel sites in the Amargosa River basin above Shoshone, California. Estimates were based on a water‐balance approach combining field techniques for determining streamflow with distributed‐parameter simulation models to calculate transmission losses of ephemeral streamflow and upland recharge resulting from high‐magnitude, low‐frequency precipitation events. Application of the water‐balance models to the Amargosa River basin, Nevada and California, including part of the Nevada Test Site, suggests that about 20.5 million cubic meters of water recharges the ground‐water reservoir above Shoshone annually. About 1.6 percent of precipitation becomes recharge basinwide. About 90 percent of the recharge is by transmission loss in channels, and the remainder occurs when infrequent storms yield sufficient precipitation that soil water percolates beyond the rooting zone and reaches the zone of saturation from interchannel areas. Highest rates of recharge are in headwaters of the Amargosa River and Fortymile Wash; the least recharge occurs in areas of relatively low precipitation in the lowermost Amargosa River watershed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.