Abstract

Necroptosis is an alternative form of programmed cell death regulated by receptor-interacting protein kinase (RIPK) 1 and 3-dependent. In the present study, to clarify if necroptosis in luteal endothelial cells (LECs) participates and contributes for bovine luteolysis, we investigated RIPK1 and RIPK3 localization in luteal tissue and their expression in cultured LECs after treatment with selected immune factors - mediators of luteolytic action of prostaglandin F2α (PGF). In addition, effects of tumor necrosis factor α (TNF; 2.3 nM) in combination with interferon γ (IFNG; 2.5 nM), and/or nitric oxide donor - NONOate (100 μM) on viability and CASP3 activity in the cultured LECs were investigated. Furthermore, effects of a RIPK1 inhibitor (necrostatin-1, Nec-1; 50 μM) on RIPKs and CASPs expression, were evaluated. Localization of RIPK1 and RIPK3 protein in the cultured LECs were determined. In cultured LECs, expression of RIPKs mRNA were up-regulated by TNF + IFNG at 12 h, and by PGF (1 μM) or NONOate at 24 h, respectively (P < 0.05). Although NONOate decreased cell viability, it prevented TNF + IFNG-stimulated CASP3 activity in cultured LECs. Nec-1 prevented TNF + IFNG-induced RIPK1 and CASP3 mRNA expression at 12 h and prevented RIPK3 mRNA expression. These findings suggest that RIPKs-dependent necroptosis which are induced by TNF + IFNG, PGF or NO could be potent mechanism responsible for LECs cell death and disappearance of luteal capillaries in regressing bovine CL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.