Abstract

In mammals, the corpus luteum (CL) is a transient organ that secretes progesterone (P4). In the absence of pregnancy, the CL undergoes regression (luteolysis), which is a crucial preparation step for the next estrous cycle. Luteolysis, initiated by uterine prostaglandin F2α (PGF) in cattle, is usually divided into two phases, namely functional luteolysis characterized by a decline in P4 concentration and structural luteolysis characterized by the elimination of luteal tissues from the ovary. Programmed cell death (PCD) of luteal cells, including luteal steroidogenic cells (LSCs) and luteal endothelial cells (LECs), plays a crucial role in structural luteolysis. The main types of PCD are caspase-dependent apoptosis (type 1), autophagic cell death (ACD) via the autophagy-related gene (ATG) family (type 2), and receptor-interacting protein kinase (RIPK)-dependent programmed necrosis (necroptosis, type 3). However, these PCD signaling pathways are not completely independent and interact with each other. Over the past several decades, most studies on luteolysis have focused on apoptosis as the principal mode of bovine luteal cell death. Recently, ATG family members were reported to be expressed in bovine CL, and their levels increased during luteolysis. Furthermore, the expression of RIPKs, which are crucial mediators of necroptosis, is reported to increase in bovine CL during luteolysis and is upregulated by pro-inflammatory cytokines in bovine LSCs and LECs. Therefore, apoptosis, ACD, and necroptosis may contribute to bovine CL regression. In this article, we present the recent findings regarding the mechanisms of the three main types of PCD and the contribution of these mechanisms to luteolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call