Abstract
In recent years, and particularly from 2000 onwards, the North Indian Ocean (NIO) has been acting as a major sink of ocean heat that is clearly visible in the sub-surface warming trend. Interestingly, a part of the NIO—the Arabian Sea (AS) sector—witnessed dramatic variations in recent sub-surface warming that has direct repercussion on intense Tropical Cyclone (TC) activity. This study investigated the possible causative factors and physical mechanisms towards the multi-decadal warming trends in surface and sub-surface waters over the AS region. Responsible factors towards warming are examined using altimetric observations and reanalysis products. This study used ORAS5 OHC (Ocean Heat Content), derived meridional and zonal heat transport, currents, temperature, salinity, Outgoing Longwave Radiation (OLR), and air-sea fluxes to quantify the OHC build-up and its variability at water depths of 700 m (D700) and 300 m (D300) during the past four decades. The highest variability in deeper and upper OHC is noticed for the western and southern regions of the Indian Ocean. The warming trend is significantly higher in the deeper regions of AS compared to the upper waters, and relatively higher compared to the Bay of Bengal (BoB). Increased OHC in AS show good correlation with decreased OLR in the past 20 years. An analysis of altimetric observations revealed strengthening of downwelling Kelvin wave propagation leading to warming in eastern AS, mainly attributed due to intrusion of low saline water from BoB leading to stratification. Rossby wave associated with deepening of thermocline warmed the southern AS during its propagation. Heat budget analysis reveals that surface heat fluxes play a dominant role in warming AS during the pre-monsoon season. Increasing (decreasing) trend of surface heat fluxes (vertical entrainment) during 2000–2018 played a significant role in warming the southeastern sector of AS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.