Abstract

Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the temperature in the oceanic dynamical models. PAR usually comes from the atmospheric model predictions, whereas PAR’s attenuation schemes are internally prescribed (estimated) inside the oceanic dynamical model. We perform sensitivity analyses to investigate the impact that errors in model surface PAR and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity, the relative error in surface PAR introduces a larger error in the modeled upper 25 m ocean heat content than the same magnitude relative error in the attenuation coefficient. For Jerlov’s type “IA” water (attenuation coefficient is 0.049 m−1), the relative error in surface PAR introduces an error twice as large into the model heat content as the same magnitude relative error in the attenuation coefficient. For the more turbid water Jerlov’s type “III” (attenuation coefficient is 0.127 m−1), the relative error in surface PAR introduces error seven times as large into the model heat content than the same magnitude relative error in the attenuation coefficient. We present how the upper ocean heat content sensitivities to errors in PAR and its attenuation change in space and time. While the sensitivities to the errors in surface PAR are all positive, sensitivities to the errors in attenuation coefficient have positive and negative values, depending on location. They are positive in shallower water for locations on the shelf in the northern part of the bay and negative in deeper offshore waters. Sensitivities derived provide a capability to understand and control the impact of errors in PAR and its attenuation on the upper ocean model heat content predictions.

Highlights

  • Short wave radiation (SWR) and its attenuation with depth have a major impact on the vertical distribution of oceanic water temperature, dynamical processes, and ocean–atmosphere interactions

  • Our objective is to study the sensitivity of the modeled upper ocean heat content to other mentioned above two types of errors: those related to the specification of the magnitude of Photosynthetically available radiation (PAR) at the surface and those related to the incorrect specification of the PAR attenuation coefficient with depth in the simplified exponential attenuation model

  • We have presented sensitivity analyses to investigate the impact that errors in model surface PAR and vertical attenuation of PAR have on the upper ocean model heat content

Read more

Summary

Introduction

Short wave radiation (SWR) and its attenuation with depth have a major impact on the vertical distribution of oceanic water temperature, dynamical processes, and ocean–atmosphere interactions. In existing physical oceanic models,[1,2,3,4,5,6,7] the temperature is modeled as a tracer, when its temporal change is described by the advection–diffusion-source equation. The PAR and its attenuation with depth represent a source (forcing) term in the governing equation for the temperature. In physical ocean models, there are three types of errors related to PAR and its attenuation with the depth: (1) errors in specification of the surface values of PAR, (2) errors in accuracy of the optical model for the PAR attenuation with the depth, and (3) errors in attenuation coefficients of PAR. The remote sensing community has been developing satellite-derived products of PAR and inherent optical properties

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call