Abstract

A fusion reactor generates a lot of 14 MeV neutrons, some of which penetrate shielding blankets, stream out of ports and reach superconducting magnets. Some important studies were performed in the 1970s and a basic understanding of the mechanisms of neutron irradiation effect was established. Advances in the design concept of nuclear fusion reactors led to the need for consistent studies on the neutron irradiation effect of A-15 strands such as Nb3Sn and Nb3Al, which are strong candidates for fusion reactors. In the early 2000s, a progressive attempt to organize the collaborative research of universities and national institutes was started using a 14 MeV neutron source at Japan Atomic Energy Agency. This paper outlines the neutron irradiation issues related to superconducting magnets for fusion, and a brief history of research on the neutron irradiation effect is provided. In addition, experimental results regarding changes in the superconducting properties of Nb3Sn and Nb3Al strands by neutron irradiation obtained in the newly established collaborative framework are presented, and general mechanisms for the property changes are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.