Abstract
The ability to grow complex multilayer structures in Hg1-xCdxTe by epitaxial techniques has made it possible to produce a range of new devices such as infrared LEDs, lasers, and two-color infrared detector arrays. The devices described here, however, are designed to operate at temperatures above 145K and include both infrared sources and detectors. Three layer ppn structures, where the underlined symbols mean wider gap, have close to Auger limited RoAs at temperatures above 145K. Under reverse bias, the devices exhibit Auger suppression leading to useful detectivities at room temperature. The diodes exhibit forward biased electroluminescence at room temperature although the efficiency of this emission is found to fall rapidly as the peak wavelength is increased toward 9 μm due to increased Auger recombination rates. By reverse biasing them, however, the devices show negative luminescence as a result of reducing the electron and hole densities below their thermal equilibrium value. The diode emitters have a higher quantum efficiency when used in this mode due to Auger suppression of the dark current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.