Abstract
MEMS research has been carried out through industry-university (Tohoku) collaboration for practical applications. Sophisticated devices such as electrostatically levitated rotational gyroscope, MEMS relay for wafer level packaging, array MEMS including multi-probe data storage and multi-column electron beam lithography system, small diameter fiber optic pressure sensor and SiC micro structure or glass press molding, have been developed. Electrical feedthroughs in glass play important role in the wafer level packaging and array MEMS. Materials such as conductive polymer for recording media, carbon nanotube for electron field emitter, SiC for harsh environment are used in these MEMS because of their unique features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Speed Electronics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.