Abstract

Membrane distillation (MD) has gained the interest of many researchers since it is a promising method for the separation and purification process. Membrane distillation (MD) is a non-isothermal separation process in which differential vapor pressure between porous hydrophobic membrane surfaces acts as a driving factor. A hydrophobic membrane is used in the application of MD, which permits only the passage of vapor produced on the feed side through its pores to the permeate side. One of the most significant obstacles to the commercialisation of the MD method is a lack of appropriate membranes for the process. On the other hand, conventional hydrophobic membranes are subjected to rapid wetting and severe fouling, mainly when low surface tension compounds are present in saline water, resulting in decreased MD performance. In recent decades, MD membranes have received exceptional scientific interest, with substantial progress being made in the design and production of MD membranes appropriate for use in many applications. This review gives a comprehensive overview of recent research developments in the tailoring morphological structure of hydrophobic membranes, emphasising advancements in the fabrication and modification of membranes towards exhibiting high efficiency in the MD process. In addition, the critical morphology characteristics, mainly surface roughness, wettability, and water contact angle, are analysed. Finally, the challenges faced and future research direction is highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.