Abstract

Rechargeable zinc-ion batteries (ZIBs) are attractive for large-scale energy storage due to their superiority in resources, safety, and environmental friendliness. However, the lack of suitable ZIBs cathode materials limits their practical applications. In consideration of the excellent electrochemical performance of phosphate materials in monovalent ion (Li+ , Na+ ) batteries, they were also employed as ZIBs cathode materials recently and performed well with high potential. But they also suffer from low capacity and poor conductivity, and the energy storage mechanism is not clear yet. This Review provides a state-of-the art overview on the developments of phosphate cathode materials in ZIBs, including NASICON-type phosphates, fluorophosphates, olivine-structured, layered-structured, and novel-structured phosphate materials mainly. This study presents the reaction mechanism and electrochemical performance of phosphate cathode materials in aqueous ZIBs, and future research directions are discussed, which are intended to provide guidance for exploring high-potential cathode materials for ZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call