Abstract

To realize intelligent functions in electronic devices like a human brain, it is important to develop the electronic devices that can imitate biological neurons and synapses (synaptic electronics). In this paper, we review the critical learning mechanisms for synaptic plasticity. Different electronic devices were developed to mimic biological synapses, such as atomic switch, phase change memory, ferroelectric memory, and electric-double-layer transistors. More importantly, several groups have realized the artificial neuromorphic network using multi-gate transistor architecture. The leap from synapse to neuron to neural network, thus, has been systematically realized using thin films and nanomaterials. The emerging synaptic electronics can have a broader applications and brighter future in the next-generation intelligent nano-electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.