Abstract

Compared with inorganic thermoelectric materials, organic thermoelectric (OTE) materials have attracted increasing attention due to their advantages of low toxicity, high mechanical flexibility, and large-scale solution processability. In the past few years, OTE materials have made remarkable progress in terms of their design, synthesis, and device performance. However, some challenges remain, including the low doping efficiency in n-type materials, poor doping stability with molecular dopants, and the largely reduced Seebeck coefficient after heavily doping, etc. All these factors hinder the further development of OTEs for commercial applications. In this Minireview, we highlight several key challenges during the development of OTEs and summarize recent understandings and efforts to address these challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.