Abstract
AbstractNowadays, organic thermoelectric (TE) materials have attracted considerable attention due to their unique merits, e.g., light‐weight, high mechanical flexibility, nontoxicity, easy availability, and intrinsically low thermal conductivity. Among the organic/polymer TE materials reported so far, poly(3,4‐ethylenedioxythiophene):poly(styrenensulfonate) (PEDOT:PSS) is extensively investigated because it is water‐processable, thermally stable, and can be highly conductive. Over the past few years, the TE properties of the PEDOT‐based TE materials are continuously improved. With rational design, some PEDOT:PSS‐based materials have achieved high ZT values comparable to the conventional inorganic TE materials like bismuth telluride at room temperature. This paper reviews the recent breakthroughs for PEDOT:PSS‐based TE polymers and composites. The strategies for achieving high‐performance PEDOT:PSS‐based TE materials and the corresponding underlying mechanism are specifically discussed. The TE devices fabricated by the PEDOT:PSS‐based TE materials are also presented, in terms of their fabrication/assembly technique, device configuration and device performance. With all the exciting progress made in the PEDOT:PSS‐based TE materials, the further development and practical applications of the high‐efficient organic TE materials as flexible TE module devices and wearable electronics can be greatly anticipated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.